Abstract

Pulsatile insulin release into the portal vein is critically dependent on entrainment of the islets in the pancreas into a common oscillatory phase. Because the pulses reflect periodic variations of the cytoplasmic Ca concentration ([Ca]i), we studied whether the neurotransmitters adenosine triphosphate (ATP) and acetylcholine promote synchronization of [Ca]i oscillations between islets lacking contact. Medium-sized and small mouse islets and cell aggregates were used for measuring [Ca]i with the indicator fura-2. Exposure to acetylcholine resulted in an initial [Ca]i peak followed by disappearance of the [Ca]i oscillations induced by 11-mmol/L glucose. The effect of ATP was often restricted to an elusive [Ca]i peak. The incidence of distinct [Ca]i responses to ATP increased under conditions (accelerated superfusion, small islets, or cell aggregates) intended to counteract purinoceptor desensitization owing to intercellular accumulation of ATP. Attempts to imitate neural activity by brief (15 seconds) exposure to ATP or acetylcholine resulted in temporary synchronization of the glucose-induced [Ca]i oscillations between islets lacking contact. The data support the idea that purinergic signaling has a key role for coordinating the oscillatory activity of the islets in the pancreas, reinforcing previous arguments for the involvement of nonadrenergic, noncholinergic neurons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.