Abstract

Systemic administration of p-chloroamphetamine (PCA) causes degeneration of serotonergic (5-HT) axons, but recent data indicate that this drug itself is not neurotoxic when applied directly to 5-HT axons. The present study was designed to test whether the toxic effects of PCA in the brain are dependent on release of endogenous 5-HT and to identify which stores of 5-HT are involved. The long-term effects of PCA on brain levels of 5-HT and on central 5-HT axons were determined in rats that had been initially depleted of 5-HT by administration of p-chlorophenylalanine and reserpine. The resultsshow that transient depletion of 5-HT provides substantial protection against subsequent PCA-induced degeneration of 5-HT axon terminals; the neurotoxicity induced by PCA thus appears to be dependent on the presence of endogenous stores of 5-HT. In addition, the protective effect of 5-HT depletion is found only after pretreatment regimens that deplete peripheral as well as central stores of 5-HT. We interpret this finding as evidence that release of 5-HT from peripheral storage sites may be necessary for the expression of PCA-induced toxicity. Based on these results, we propose that central neurotoxicity is not induced by a direct action of PCA alone but may require or be augmented by a toxic metabolite of 5-HT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call