Abstract

BackgroundThe cornea is innervated with a rich supply of sensory nerves that play important roles in ocular surface health. Any injury or pathology of the corneal nerves increases the risk of dry eye disease and infection. This study aims to evaluate the therapeutic potential of topical decorin to improve corneal nerve regeneration in a mouse model of sterile epithelial abrasion injury.MethodsBilateral central corneal epithelial abrasions (2-mm, Alger Brush) were performed on young C57BL/6 J mice to remove the corneal sensory nerves. Decorin, or vehicle, was applied topically, three times per day for 1 week or every 2 h for 6 h. Spectral-domain optical coherence tomography was performed to measure the abrasion area and corneal thickness. Wholemount immunofluorescence staining was used to assess sensory nerve regeneration (β-tubulin III) and immune cell density (CD45, Iba1, CD11c). To investigate the specific role of dendritic cells (DCs), Cx3cr1gfp/gfp mice, which spontaneously lack resident corneal epithelial DCs, were also investigated. The effect of prophylactic topical administration of recombinant human decorin (applied prior to the abrasion) was also investigated. Nerve tracing (NeuronJ software) was performed to compare recovery of basal nerve axons and superficial nerve terminals in the central and peripheral cornea.ResultsAt 6 h after injury, topical decorin application was associated with greater intraepithelial DC recruitment but no change in re-epithelialisation or corneal thickness, compared to the vehicle control. One week after injury, sub-basal nerve plexus and superficial nerve terminal density were significantly higher in the central cornea in the decorin-treated eyes. The density of corneal stromal macrophages in the decorin-treated eyes and their contralateral eyes was significantly lower compared to saline-treated corneas. No significant improvement in corneal nerve regeneration was observed in Cx3cr1gfp/gfp mice treated with decorin.ConclusionsDecorin promotes corneal epithelial nerve regeneration after injury. The neuroregenerative effect of topical decorin was associated with a higher corneal DC density during the acute phase, and fewer macrophages at the study endpoint. The corneal neuroregenerative effects of decorin were absent in mice lacking intraepithelial DCs. Together, these findings support a role for decorin in DC-mediated neuroregeneration following corneal abrasion injury.

Highlights

  • The cornea is innervated with a rich supply of sensory nerves that play important roles in ocular surface health

  • Corneal neuroregenerative and inflammatory effects of decorin at 1 week For all experiments, the abrasion injury was photographed for every animal to ensure similar wound sizes were generated in all mice

  • The eyes treated with decorin showed greater corneal nerve regeneration in the central cornea compared to those without (SNT 1806 ± 402 vs 1355 ± 443 μm, p = 0.027; sub-basal nerve plexus (SBNP) 3208 ± 1085 vs 1963 ± 1196 μm, p = 0.006)

Read more

Summary

Introduction

The cornea is innervated with a rich supply of sensory nerves that play important roles in ocular surface health. Several nerve branches of the SBNP turn upward, penetrating vertically through the epithelium, and terminate just beneath the epithelial surface as superficial nerve terminals (SNT) [2] This rich supply of unmyelinated peripheral nerves serves critical functions in maintaining homeostasis of the corneal epithelium and the ocular surface, orchestrating rapid responses to external stimuli with blinking, tear production and the release of numerous tropic substances, such as substance P, neurotransmitters and neuropeptides [3, 4]. A range of ocular surface conditions, including viral infections, chemical and physical burns, topical drug preservatives and corneal surgeries, can cause corneal neuropathy, which in turn can lead to chronic pain and dry eye disease [5, 6]. Systemic diseases such as diabetes mellitus can negatively affect corneal nerve density and function [7, 8], compromising the integrity of the ocular surface

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call