Abstract

BackgroundRecanalization is the main treatment option for ischemic stroke. However, prognosis remains poor for about half of patients after recanalization, possibly due to the “no-reflow” phenomenon at the early phase of recanalization. Normobaric oxygenation (NBO) during ischemia can reportedly maintain the partial pressure of oxygen and exert a protective effect in ischemic brain tissue. Objectives and methodsThis study investigated whether prolonged NBO treatment during ischemia and the early phase of reperfusion (i/rNBO) has neuroprotective effects and to elucidate the underlying mechanisms in rats with middle cerebral artery occlusion plus reperfusion. ResultsNBO treatment significantly elevated the level of O2 in the atmosphere and arterial blood without altering the level of CO2. The infarcted cerebral volume was significantly reduced by application of i/rNBO as compared to iNBO (applied during ischemia) or rNBO (applied at the early phase of reperfusion), indicating better protective effects of i/rNBO. i/rNBO more effectively suppressed s-nitrosylation of MMP-2 (amplifying inflammation) as compared to iNBO and rNBO, dramatically downregulated the cleavage of poly(ADP-ribose)polymerase-1 (PARP-1, acting as the substrate of MMP-2), and suppressed neuronal apoptosis, as determined by the TUNEL assay and staining for NeuN. These results demonstrated that application of i/rNBO in the early stage of reperfusion significantly alleviated neuronal apoptosis via suppression of the MMP-2/PARP-1 pathway. ConclusionsThe mechanism underlying the neuroprotective role of i/rNBO involved prolonged NBO treatment for cerebral ischemia, suggesting that i/rNBO may allow expansion of the time window for NBO application in stroke patients following vascular recanalization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call