Abstract
BackgroundEffective neurorestorative therapies of neurodegenerative diseases must be developed. There is increasing interest in using human platelet lysates, rich in neurotrophic factors, as novel disease-modifying strategy of neurodegeneration. To ensure virus safety, pathogen reduction treatments should be incorporated in the preparation process of the platelet concentrates used as source material. We therefore investigated whether platelet concentrates (PC) pathogen-inactivated using a licensed photo-inactivation treatment combining photosensitive psoralen (amotosalen) and UVA irradiation (Intercept) can serve as source material to prepare platelet lysates with preserved neuroprotective activity in Parkinson’s disease models.MethodsIntercept treated-PCs were centrifuged, when reaching expiry day (7 days after collection), to remove plasma and platelet additive solution. The platelet pellet was re-suspended and concentrated in phosphate buffer saline, subjected to 3 freeze-thaw cycles (− 80 °C/37 °C) then centrifuged to remove cell debris. The supernatant was recovered and further purified, or not, by heat-treatment as in our previous investigations. The content in proteins and neurotrophic factors was determined and the toxicity and neuroprotective activity of the platelet lysates towards LUHMES cells or primary cortical/hippocampal neurons were assessed using ELISA, flow cytometry, cell viability and cytotoxicity assays and proteins analysis by Western blot.ResultsPlatelet lysates contained the expected level of total proteins (ca. 7–14 mg/mL) and neurotrophic factors. Virally inactivated and heat-treated platelet lysates did not exert detectable toxic effects on neither Lund human mesencephalic dopaminergic LUHMES cell line nor primary neurons. When used at doses of 5 and 0.5%, they enhanced the expression of tyrosine hydroxylase and neuron-specific enolase in LUHMES cells and did not significantly impact synaptic protein expression in primary neurons, respectively. Furthermore, virally-inactivated platelet lysates tested were found to exert very strong neuroprotection effects on both LUHMES and primary neurons exposed to erastin, an inducer of ferroptosis cell death.ConclusionOutdated Intercept pathogen-reduced platelet concentrates can be used to prepare safe and highly neuroprotective human heat-treated platelet pellet lysates. These data open reassuring perspectives in the possibility to develop an effective biotherapy using virally-inactivated platelet lysates rich in functional neurotrophins for neuroregenerative medicine, and for further bio-industrial development. However, the data should be confirmed in animal models.Graphical abstract
Highlights
There is currently no licensed treatment to stimulate neurorestoration and provide neuroprotection in neurodegenerative diseases like Parkinson’s disease (PD), Alzheimer disease (AD) or amyotrophic lateral sclerosis (ALS)
Platelet lysates are rich in trophic factors including brain-derived neurotrophic factor (BDNF), platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), insulin-like growth factor I and Insulin-like growth factor I and II (II) (IGF-I and II), transforming growth factor (TGF-β), epidermal growth factor (EGF) as well as various others cytokines, like platelet factor 4 (PF4 or C-X-C chemokine ligand 4 (CXCL4)) [6]
The analysis of the growth factors content by Enzymelinked immunosorbent assay (ELISA) revealed a substantial amount of BDNF, EGF, PDGF-AB, and VEGF in all fractions (Fig. 3b-e)
Summary
There is currently no licensed treatment to stimulate neurorestoration and provide neuroprotection in neurodegenerative diseases like Parkinson’s disease (PD), Alzheimer disease (AD) or amyotrophic lateral sclerosis (ALS). Administration of platelet lysates was found to stimulate the proliferation of endogenous neural stem cells as well as angiogenesis, leading to reduced injury and improved functional outcomes in a stroke model [8]. This body of evidence supports the need for further exploration of the translational value of platelet lysates to develop an optimally effective and safe biotherapy for neurodegenerative disorders [4, 5]. We investigated whether platelet concentrates (PC) pathogen-inactivated using a licensed photo-inactivation treatment combining photosensitive psoralen (amotosalen) and UVA irradiation (Intercept) can serve as source material to prepare platelet lysates with preserved neuroprotective activity in Parkinson’s disease models
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.