Abstract

Exposure of neuronal cells to the Alzheimer's amyloid beta protein (Abeta) results in extensive oxidative damage of bio-molecules that are profoundly harmful to neuronal homeostasis. It has been demonstrated that melatonin protects neurons against Abeta-mediated neurotoxicity, including cell death and a spectrum of oxidative lesions. We undertook the current study to determine whether melatonin membrane receptors are involved in the mechanism of neuroprotection against Abeta neurotoxicity. For this purpose, we characterized the free-radical scavenging potency of several compounds exhibiting various affinities for melatonin membrane receptors (MLT 1a and 1b). Abeta-mediated neurotoxicity was assessed in human neuroblastoma cells and in primary hippocampal neurons. In sharp contrast with melatonin, no neuroprotection against Abeta toxicity was observed when we used melatonin membrane receptor agonists that were devoid of antioxidant activity. In contrast, the cells were fully protected in parallel control experiments when either melatonin, or the structurally unrelated free-radical scavenger phenyl-N-t-butyl nitrone (PBN), were added to Abeta-containing culture media. This study demonstrates that the neuroprotective properties of melatonin against Abeta-mediated toxicity does not require binding of melatonin to a membrane receptor and is likely the result of the antioxidant and antiamyloidogenic features of the agent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.