Abstract
Promising plasmid-based treatments have limited value without an effective delivery system. Recently, the linear H2K with a repeating -KHHK- pattern was determined to be an effective plasmid carrier to tumor xenografts in vivo. Although unpacking of the H2K polyplex within the tumor may have a role, the mechanism for the enhanced efficacy remains unclear. After solid-phase synthesis of linear and branched histidine-lysine (HK) peptide carriers of plasmids, the peptides were compared for their ability to lyse endosomes with a red blood cell model and to transfect MDA-MB-435 xenografts in the presence or absence of neuropilin-1 receptor (NRP-1) antibodies. To examine stability, polyplexes were incubated with trypsin or NaCl and then analyzed by electrophoresis. After screening peptides with a model for endosomal lysis at two pHs, the 33-mer H3K peptide lysed red blood cells effectively at the lower pH. Combining H3K and H2K peptides as carriers of plasmids expressing luciferase were more effective than H2K alone. Based on the repeating -KHHK- sequences of H2K, we studied whether the widespread gene expression in the tumor may be mediated by NRP-1. By blocking NRP-1 in tumor-bearing mice, luciferase activity in tumors delivered by HK polyplexes was reduced by 96%, whereas activity in normal tissues was minimally reduced. Combining an endosomolytic peptide, H3K, with H2K polyplexes as a carrier further enhanced transfection in vivo. Moreover, the widespread distribution of H2K polyplexes is mediated by NRP-1, suggesting that transcytosis of these polyplexes through the tumor endothelium may lead to efficient transfection. Copyright © 2016 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.