Abstract

Sleep disturbances are among the most common nonmotor complications of Parkinson's disease (PD), can present in prodromal stages, and progress with advancing disease. In addition to being a symptom of neurodegeneration, sleep disturbances may also contribute to disease progression. Currently, limited options exist to modulate sleep disturbances in PD. Studying the neurophysiological changes that affect sleep in PD at the cortical and subcortical level may yield new insights into mechanisms for reversal of sleep disruption. In this article, we review cortical and subcortical recording studies of sleep in PD with a particular focus on dissecting reported electrophysiological changes. These studies show that slow-wave sleep and rapid eye movement sleep are both notably disrupted in PD. We further explore the impact of these electrophysiological changes and discuss the potential for targeting sleep via stimulation therapy to modify PD-related motor and nonmotor symptoms. © 2021 International Parkinson and Movement Disorder Society.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call