Abstract

Neurons signal each other via regenerative electrical impulses (action potentials) and thus can be thought of as electrogenic machines. Voltage-gated sodium channels produce the depolarizations necessary for action potential activity in most neurons and, in this respect, lie close to the heart of the electrogenic machinery. Although classical neurophysiological doctrine accorded 'the' sodium channel a crucial role in electrogenesis, it is now clear that nearly a dozen genes encode distinct sodium channels with different molecular structures and functional properties, and the majority of these channels are expressed within the mammalian nervous system. The transcription of these sodium-channel genes, and the deployment of the channels that they encode, can change significantly within neurons following various injuries. Moreover, the transcription of these genes and the deployment of various types of sodium channels within neurons of the normal nervous system can change markedly as neurons respond to changing milieus or physiological inputs. As a result of these changes in sodium-channel expression, the membranes of neurons may be retuned so as to alter their transductive and/or encoding properties. Neurons within the normal and injured nervous system can thus function as dynamic electrogenic machines with electroresponsive properties that change not only in response to pathological insults, but also in response to shifting functional needs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.