Abstract

When stimulated either acoustically or tactually, certain species of arctiid moths rhythmically emit trains of clicks from metathoracic tymbals. The purpose of the experiments presented here was to determine the location within the central nervous system (CNS) of the proposed tymbal central pattern generator (CPG) in Cycnia tenera. Motor neuron impulses that underlie tymbal activation were recorded extracellularly from the tymbal nerve while moths were subjected to selective severing of the suboesophageal, prothoracic, pterothoracic and abdominal ganglia connectives. Motor output evoked by either acoustic or tactile stimulation originates from a common CPG because tymbal nerve spikes in both cases are similar in amplitude, waveform and rhythmicity. Our results showed: (1) removal of the CNS posterior of the second abdominal neuromere had no effect, (2) removal of the head decreased the responsiveness of the animal to acoustic stimulation and, (3) severing the connectives between the prothoracic and pterothoracic ganglia abolished responses to acoustic stimuli and diminished responses to tactile stimuli. We conclude that although the minimal circuitry sufficient for activating the tymbals resides in the pterothoracic ganglion, the prothoracic and cephalic ganglia are required for the normal, and in particular, auditory-evoked operation of the tymbal CPG.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.