Abstract

When investigating multi-item WM, and in contrast to single item experiments, a decision must be made regarding a key aspect of the stimulation protocol: how the memory set is presented to the subject simultaneously or sequentially. It is worth noting that most studies investigating multi-item WM do not address this issue and focus either in simultaneous stimulation protocols (e.g. [1,2]) or in sequential stimulation protocols (e.g. [3]) without confronting the two situations. This is nevertheless an aspect which provides a benchmark to probe and compare the different theories regarding how resources are allocated among the different items of a memory set [4,5]. In this study, we explore a biophysically-realistic attractor model of visual working memory (VWM) endowed with synaptic facilitation and investigate what are the effects of varying the dynamics of the facilitation process. We fi nd that: 1) it is possible to reproduce experimentally observed effects such as the recency effect in sequential stimulation protocols (i.e. items presented in the final positions of a sequence are more likely to be retained in WM), and 2) WM capacity is boosted in both sequential and stimulation protocols when endowing the attractor network with synaptic facilitation. Conclusions In agreement with our previous results [2], synaptic facilitation boosts the WM capacity limit by effectively increasing the synaptic strengths just for those pools to which a cue is applied, and then maintaining the synaptic facilitation by the continuing neuronal firing in only these pools when the cue is removed. In this study, the time constant τF of the synaptic facilitation process has been found to play an important role in modulating this effect with large τF values leading to larger capacity limits in both sequential and simultaneous stimulation protocols. However, too large τF values lead to neuronal dynamics which are not compatible with the recency effect, thus constraining the range of values that τF may take.

Highlights

  • When investigating multi-item WM, and in contrast to single item experiments, a decision must be made regarding a key aspect of the stimulation protocol: how the memory set is presented to the subject simultaneously or sequentially

  • The time constant τF of the synaptic facilitation process has been found to play an important role in modulating this effect with large τF values leading to larger capacity limits in both sequential and simultaneous stimulation protocols

  • Too large τF values lead to neuronal dynamics which are not compatible with the recency effect, constraining the range of values that τF may take

Read more

Summary

Introduction

When investigating multi-item WM, and in contrast to single item experiments, a decision must be made regarding a key aspect of the stimulation protocol: how the memory set is presented to the subject simultaneously or sequentially. These pools when the cue is removed.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call