Abstract

RNF113A (Ring Finger Protein 113A) is genetically associated with autism spectrum disorders and X-linked trichothiodystrophy (TTD) syndrome. Loss-of-function mutations in human RNF113A are causally linked to TTD, which is characterized by abnormal development of the central nervous system (CNS) and mental retardation. How the loss of RNF113A activity affects brain development is not known. Here we identify Rnf113a1 as a critical regulator of cell death and neurogenesis during mouse brain development. Rnf113a1 gene exhibits widespread expression in the embryonic CNS. Knockdown studies in embryonic cortical neural stem/progenitor cells (NSCs) and the mouse cortex suggest that Rnf113a1 controls the survival, proliferation, and differentiation properties of progenitor cells. Importantly, Rnf113a1 deficiency triggers cell apoptosis via a combined action on essential regulators of cell survival, including p53, Nupr1, and Rad51. Collectively, these observations establish Rnf113a1 as a regulatory factor in CNS development and provide insights into its role in neurodevelopmental defects associated with TTD and autism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call