Abstract

Current neural models of value-based decision-making consider choices as a 2-stage process, proceeding from the "valuation" of each option under consideration to the "selection" of the best option on the basis of their subjective values. However, little is known about the computational mechanisms at play at the selection stage and its implementation in the human brain. Here, we used drift-diffusion models combined with model-based functional magnetic resonance imaging, effective connectivity, and multivariate pattern analysis to characterize the neuro-computational architecture of value-based decisions. We found that 2 key drift-diffusion computations at the selection stage, namely integration and choice readout, engage distinct brain regions, with the dorsolateral prefrontal cortex integrating a decision value signal computed in the ventromedial prefrontal cortex, and the posterior parietal cortex reading out choice outcomes. Our findings suggest that this prefronto-parietal network acts as a hub implementing behavioral selection through a distributed drift-diffusion process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.