Abstract

Autism spectrum disorder is a complex neurodevelopmental disorder, which is accompanied by differences in brain anatomy, functioning and brain connectivity. Due to its neurodevelopmental character, and the large phenotypic heterogeneity among individuals on the autism spectrum, the neurobiology of autism spectrum disorder is inherently difficult to describe. Nevertheless, significant progress has been made in characterizing the neuroanatomical underpinnings of autism spectrum disorder across the human life span, and in identifying the molecular pathways that may be affected in autism spectrum disorder. Moreover, novel methodological frameworks for analyzing neuroimaging data are emerging that make it possible to characterize the neuroanatomy of autism spectrum disorder on the case level, and to stratify individuals based on their individual phenotypic make up. While these approaches are increasingly more often employed in the research setting, their applicability in the clinical setting remains a vision for the future. The aim of the current review is to (1) provide a general overview of recent structural neuroimaging findings examining the neuroanatomy of autism spectrum disorder across the human life span, and in males and females with the condition, (2) highlight potential neuroimaging (bio)markers that may in the future be used for the stratification of autism spectrum disorder individuals into biologically homogeneous subgroups and (3) inform treatment and intervention strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.