Abstract
Cerebrovascular pathology is common in aging and Alzheimer's disease (AD). The microvasculature is particularly vulnerable, with capillary-level microhemorrhages coinciding with amyloid beta deposits in senile plaques. In the current analysis, we assessed the relationship between cerebral microvessels and the neuritic component of the plaque in cortical and hippocampal 50- to 200-μm sections from 11 AD, 3 Down syndrome, and 7 nondemented cases in neuritic disease stages 0–VI. We report that 77%–97% of neuritic plaques are perivascular, independently of disease stage or dementia diagnosis. Within neuritic plaques, dystrophic hyperphosphorylated tau–positive neurites appear as clusters of punctate, bulbous, and thread-like structures focused around capillaries and colocalize with iron deposits characteristic of microhemorrhage. Microvessels within the neuritic plaque are narrowed by 1.0 ± 1.0 μm–4.4 ± 2.0 μm, a difference of 16%–65% compared to blood vessel segments with diameters 7.9 ± 2.0–6.4 ± 0.8 μm (p < 0.01) outside the plaque domain. The reduced capacity of microvessels within plaques, frequently below patency, likely compromises normal microlocal cerebrovascular perfusion. These data link the neuritic and amyloid beta components of the plaque directly to microvascular degeneration. Strategies focused on cerebrovascular antecedents to neuritic dystrophy in AD have immediate potential for prevention, detection, and therapeutic intervention.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.