Abstract

Eating behavior is guided by a complex interaction between signals conveying information about energy stores, food availability, and palatability. How peripheral signals regulate brain circuits that guide feeding during sensation and consumption of a palatable food is poorly understood. We used fMRI to measure brain response to a palatable food (milkshake) when n=32 participants were fasted and fed with either a fixed-portion or ad libitum meal. We found that larger post-prandial reductions in ghrelin and increases in triglycerides were associated with greater attenuation of response to the milkshake in brain regions regulating reward and feeding including the midbrain, amygdala, pallidum, hippocampus, insula and medial orbitofrontal cortex. Satiation-induced brain responses to milkshake were not related to acute changes in circulating insulin, glucose, or free fatty acids. The impact of a meal on the response to milkshake in the midbrain and dorsolateral prefrontal cortex differed depending upon whether meal termination was fixed or volitional, irrespective of the amount of food consumed. We conclude that satiation-induced changes in brain response to a palatable food are strongly and specifically associated with changes in circulating ghrelin and triglycerides and by volitional meal termination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.