Abstract
A method for detecting weak signals embebed in chaotic noise by neural networks based on the theory of phase space reconstruction of the complicated nonlinear system is presented. One-step predictive model for chaotic background is built by neural network that possess powerful cap ability of learning and nonlinear processing. Then the weak transient signal or periodic signal which is embedded in the chaotic background can be detected from the predictive error. And the detecting ability of this method when the chaotic background is mixed with white noiseis studied. The difference in the detecting principle for the transient signal and periodic signal is pointed out. The experiment which takes the Lorenz system as chaotic background shows this method can effectively detect very weak signals embedded in the chaotic background.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.