Abstract
An inverse-free neural network model with mixed delays is proposed for solving the absolute value equation (AVE) Ax−|x|−b=0, which includes an inverse-free neural network model with discrete delay as a special case. By using the Lyapunov–Krasovskii theory and the linear matrix inequality (LMI) method, the developed neural network models are proved to be exponentially convergent to the solution of the AVE. Compared with the existing neural network models for solving the AVE, the proposed models feature the ability of solving a class of AVE with ‖A−1‖>1. Numerical simulations are given to show the effectiveness of the proposed delayed neural network models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.