Abstract
Neural crest cells (NCCs) are a subset of multipotent, migratory stem cells that populate a large number of tissues during development and are important for craniofacial and cardiac morphogenesis. Although microRNAs (miRNAs) have emerged as important regulators of development and disease, little is known about their role in NCC development. Here, we show that loss of miRNA biogenesis by NCC-specific disruption of murine Dicer results in embryos lacking craniofacial cartilaginous structures, cardiac outflow tract septation and thymic and dorsal root ganglia development. Dicer mutant embryos had reduced expression of Dlx2, a transcriptional regulator of pharyngeal arch development, in the first pharyngeal arch (PA1). miR-452 was enriched in NCCs, was sufficient to rescue Dlx2 expression in Dicer mutant pharyngeal arches, and regulated non-cell-autonomous signaling involving Wnt5a, Shh and Fgf8 that converged on Dlx2 regulation in PA1. Correspondingly, knockdown of miR-452 in vivo decreased Dlx2 expression in the mandibular component of PA1, leading to craniofacial defects. These results suggest that post-transcriptional regulation by miRNAs is required for differentiation of NCC-derived tissues and that miR-452 is involved in epithelial-mesenchymal signaling in the pharyngeal arch.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.