Abstract

Age-related deficits in selective attention have been demonstrated to depend on the sensory modality through which targets and distractors are presented. Some of these investigations suggest a specific impairment of cross-modal auditory selective attention. For the first time, this study is taking on a whole brain approach while including a passive perception baseline, to investigate the neural underpinnings of selective attention across age groups, and taking the sensory modality of relevant and irrelevant (i.e., distracting) stimuli into account. Sixteen younger (mean age = 23.3 years) and 14 older (mean age = 65.3 years), healthy participants performed a series of delayed match-to-sample tasks, in which participants had to selectively attend to visual stimuli, selectively attend to auditory stimuli, or passively view and hear both types of stimuli, while undergoing 3T fMRI. The imaging analyses showed that areas recruited by cross-modal visual and auditory selective attention in both age groups included parts of the dorsal attention and frontoparietal control networks (i.e., intraparietal sulcus, insula, fusiform gyrus, anterior cingulate, and inferior frontal cortex). Most importantly, activation throughout the brain did not differ across age groups, suggesting intact brain function during cross-modal selective attention in older adults. Moreover, stronger brain activation during cross-modal visual vs. cross-modal auditory selective attention was found in both age groups, which is consistent with earlier accounts of visual dominance. In conclusion, these results do not support the hypothesized age-related deficit of cross-modal auditory selective attention. Instead, they suggest that the underlying neural correlates of cross-modal selective attention are similar in younger and older adults.

Highlights

  • Selective attention enables a person to attend to relevant stimuli in the environment while ignoring irrelevant stimuli

  • Cross-Modal Visual Selective Attention Across age groups, higher activation during visual attention conditions relative to the perceptual baseline was observed in the left supplementary motor area, the premotor cortex, lateral parietal cortex, parts of the inferior frontal gyrus, right insula, left fusiform gyrus, and the left occipital visual association cortex (VAC)

  • By incorporating a perceptual baseline condition, we have been able to show recruitment of several brain regions known to be involved in attentional regulation, such as the frontoparietal, and fronto-subcortical areas of the frontoparietal control network, the dorsal attention network, and the salience network

Read more

Summary

Introduction

Selective attention enables a person to attend to relevant stimuli in the environment while ignoring irrelevant stimuli. In contrast to bottom-up attentional modulation, which happens when an individual’s attentional focus is passively drawn toward environmental, incoming stimuli, selective attention requires active selection, that is, facilitation of relevant and suppression of irrelevant stimuli, which is referred to as “top-down” attentional modulation. A variety of common cognitive challenges in old age, such as memory decline, are thought to be the result of deficits in the inhibition of task-irrelevant information. This so-called inhibitory deficit hypothesis was originally proposed by Hasher and Zacks (1988). Many studies have offered support for the notion that older individuals are less effective at inhibiting irrelevant information than their younger counterparts (e.g., Zacks and Hasher, 1994; Lustig et al, 2001)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call