Abstract

In daily life, we often make decisions based on relative value of the options, and we often derive these values from segmenting or integrating the outcomes of past episodes in memory. The neural correlates involved in value-based decision-making have been extensively studied in the literature, but few studies have investigated this topic in decisions that require segmenting or integrating episodic memory from related sources, and even fewer studies examine it in the context of spatial navigation. Building on the computational models from our previous studies, the current study investigates the neural substrates involved in decisions that require people either segment or integrate wayfinding outcomes involving different goals, across virtual spatial navigation tasks with differing demands. We find that when decisions require computation of spatial distances for navigation options, but also evaluation of one's prior spatial navigation ability with the task, the estimated value of navigational choices (EV) modulates neural activity in the dorsomedial prefrontal (dmPFC) cortex and ventrolateral prefrontal (vlFPC) cortex. However, superior parietal cortex tracked EV when decision-making tasks only require spatial distance memory but not evaluation of spatial navigation ability. Our findings reveal divergent neural substrates of memory integration in value-based decision-making under different spatial processing demands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.