Abstract

The ability to detect and correct errors is critical to adaptive control of behaviour and represents a discrete neuropsychological function. A number of studies have highlighted that attention-deficit hyperactivity disorder (ADHD) is associated with abnormalities in behavioural and neural responsiveness to performance errors. One limitation of previous work has been a failure to determine the extent to which these differences are attributable to failures of conscious error awareness, a process that is dependent on the integrity of the frontal lobes. Recent advances in electrophysiological research make it possible to distinguish unconscious and conscious aspects of error processing. This study constitutes an extensive electrophysiological investigation of error awareness and error processing in ADHD. A Go/No-Go response inhibition task specifically designed to assess error awareness was administered to a group of adults diagnosed with ADHD and a group of matched control participants. The ADHD group made significantly more errors than the control group but was less likely to consciously detect these errors. An analysis of event-related potentials elicited by errors indicated that an early performance monitoring component (early positivity) was significantly attenuated in the ADHD group as was a later component that specifically reflects conscious error processing (Pe). Dipole source modelling suggested that abnormal Pe amplitudes were attributable to decreased activation of the anterior cingulate cortex. Decreased electrodermal activity in the ADHD group also suggested a motivational insensitivity to performance errors. Our data provide evidence that neuropsychological deficits associated with ADHD can be exacerbated by error processing abnormalities. Error awareness may represent an important cognitive and physiological phenotype for ADHD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.