Abstract
Time-based inter-role conflict is a type of conflict in which individuals are faced with simultaneous role pressures from different role domains. Some researchers have applied a decision-making perspective to investigate inter-role conflict; however, the neural basis of inter-role decision-making has rarely been discussed. In the current study, a collection of inter-role conflict scenarios with high/low levels of conflict were selected, and sixty college students were recruited to make choices between the conflicting student and family/friend demands in each scenario while their brain activities were recorded using functional magnetic resonance imaging. Blood oxygen level-dependent conjunction analysis found that making decisions in inter-role conflict activated brain areas, including the bilateral medial prefrontal cortex (mPFC), bilateral temporoparietal conjunction (TPJ), bilateral posterior cingulate cortex (PCC), and bilateral anterior temporal lobe. Direct comparisons between high versus low conflict situations showed increased activation of the left dorsal anterior cingulate. A generalized psychophysiological interaction analysis further showed enhanced connectivity among the mPFC, PCC, and bilateral TPJ in high conflict versus low conflict situations. Our study improved understanding of the relationship between brain and inter-role decision-making and provided an empirical examination on the psychological process propositions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.