Abstract

Protein malnutrition during gestation alters brain development and produces specific behavioral and cognitive changes that persist into adulthood and increase the risks of neuropsychiatric disorders. Given evidence for the role of the prefrontal cortex in such diseases, it is significant that studies in humans and animal models have shown that prenatal protein malnutrition specifically affects functions associated with prefrontal cortex. However, the neural basis underlying these changes is unclear. In the current study, prenatally malnourished and control rats performed a sustained attention task with an unpredictable distractor, a task that depends on intact prefrontal cortical function. Radiolabeled 2-deoxyglucose was used to measure neural and brain network activity during the task. Results confirmed that adult prenatally malnourished rats were more distractible than controls and exhibited lower functional activity in prefrontal cortices. Thus, prefrontal activity was a predictor of task performance in controls but not prenatally malnourished animals. Instead, prenatally malnourished animals relied on different brain networks involving limbic structures such as the hippocampus. These results provide evidence that protein reduction during brain development has more wide-reaching effects on brain networks than previously appreciated, resulting in the formation of brain networks that may reflect compensatory responses in prenatally malnourished brains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.