Abstract

A prevailing view is that Weber's law constitutes a fundamental principle of perception. This widely accepted psychophysical law states that the minimal change in a given stimulus that can be perceived increases proportionally with amplitude and has been observed across systems and species in hundreds of studies. Importantly, however, Weber's law is actually an oversimplification. Notably, there exist violations of Weber's law that have been consistently observed across sensory modalities. Specifically, perceptual performance is better than that predicted from Weber's law for the higher stimulus amplitudes commonly found in natural sensory stimuli. To date, the neural mechanisms mediating such violations of Weber's law in the form of improved perceptual performance remain unknown. Here, we recorded from vestibular thalamocortical neurons in rhesus monkeys during self-motion stimulation. Strikingly, we found that neural discrimination thresholds initially increased but saturated for higher stimulus amplitudes, thereby causing the improved neural discrimination performance required to explain perception. Theory predicts that stimulus-dependent neural variability and/or response nonlinearities will determine discrimination threshold values. Using computational methods, we thus investigated the mechanisms mediating this improved performance. We found that the structure of neural variability, which initially increased but saturated for higher amplitudes, caused improved discrimination performance rather than response nonlinearities. Taken together, our results reveal the neural basis for violations of Weber's law and further provide insight as to how variability contributes to the adaptive encoding of natural stimuli with continually varying statistics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.