Abstract
We consider the Neumann problem in a theory of plane micropolar elasticity incorporating micropolar surface effects. The incorporation of surface elasticity utilizes the Eremeyev–Lebedev–Altenbach shell model, leading to a set of second-order boundary conditions describing the separate micropolar elasticity of the surface. The Neumann problem is of particular interest, since the question of solvability is complicated by the fact that the corresponding systems of homogeneous singular integral equations admit nontrivial solutions that affect the solvability of both the interior and exterior Neumann boundary value problems. We overcome this difficulty by constructing integral representations of the solutions based on specifically constructed auxiliary matrix functions leading to uniqueness and existence theorems in appropriate classes of smooth matrix functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.