Abstract
In this paper, we consider the Neumann problem for parabolic Hessian quotient equations. We show that the k-admissible solution of the parabolic Hessian quotient equation exists for all time and converges to the smooth solution of elliptic Hessian quotient equations. Also solutions of the classical Neumann problem converge to a translating solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.