Abstract

BackgroundTo explore the cortical network sustaining action myoclonus and to found markers of the resulting functional impairment, we evaluated the distribution of the cortico-muscular coherence (CMC) and the frequency of coherent cortical oscillations with magnetoencephalography (MEG). All patients had EPM1 (Unverricht-Lundborg) disease known to present with prominent and disabling movement-activated myoclonus.MethodsUsing autoregressive models, we evaluated CMC on MEG sensors grouped in regions of interests (ROIs) above the main cortical areas. The movement was a repeated sustained isometric extension of the right hand and right foot. We compared the data obtained in 10 EPM1 patients with those obtained in 10 age-matched controls.ResultsAs expected, CMC in beta band was significantly higher in EPM1 patients compared to controls in the ROIs exploring the sensorimotor cortex, but, it was also significantly higher in adjacent ROIs ipsilateral and contralateral to the activated limb. Moreover, the beta-CMC peak occurred at frequencies significantly slower and more stable frequencies in EPM1 patients with respect to controls. The frequency of the beta-CMC peak inversely correlated with the severity of myoclonus.Conclusionsthe high and spatially extended beta-CMC peaking in a restricted range of low-beta frequencies in EPM1 patients, suggest that action myoclonus may result not only from an enhanced local synchronization but also from a specific oscillatory activity involving an expanded neuronal pool. The significant relationship between beta-CMC peak frequency and the severity of the motor impairment can represent a useful neurophysiological marker for the patients’ evaluation and follow-up.

Highlights

  • To explore the cortical network sustaining action myoclonus and to found markers of the resulting functional impairment, we evaluated the distribution of the cortico-muscular coherence (CMC) and the frequency of coherent cortical oscillations with magnetoencephalography (MEG)

  • For the right upper limb motor task, post-hoc tests performed comparing different Region of interest (ROI), showed significant differences between EPM1 patients and controls on those ROIs including the brain areas physiologically activated during the motor task (Fig. 1a), and the bilateral parietal paramedian and the left temporal ROI

  • During the right lower limb motor task, significantly higher beta-CMC was observed in EPM1 patients in sensors located on left lateral parietal, bilateral vertex ROIs and left temporal ROI (Fig. 1b)

Read more

Summary

Introduction

To explore the cortical network sustaining action myoclonus and to found markers of the resulting functional impairment, we evaluated the distribution of the cortico-muscular coherence (CMC) and the frequency of coherent cortical oscillations with magnetoencephalography (MEG). Data obtained from patients with movement-activated jerks indicate that CMC between the sensorimotor region and the activated limb is mostly evident in betaband, the same band in which CMC occurs during motor task in healthy subjects [10,11,12]. These observations suggest that “pathological” CMC in patients with jerky movement disorders may result from a purely. The final goal was the achievement of objective measures suitable to improve our understanding of the dysfunctional mechanism underlying myoclonus, to quantify the severity of motor impairment and, possibly, to find biomarkers able to monitor changes due to pharmacological and nonpharmacological treatments

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call