Abstract
The primary structure of proteins, that is their sequence, represents one of the most abundant sets of experimental data concerning biomolecules. The study of correlations in families of co-evolving proteins by means of an inverse Ising-model approach allows to obtain information on their native conformation. Following up on a recent development along this line, we optimize the algorithm to calculate effective energies between the residues, validating the approach both back-calculating interaction energies in a model system, and predicting the free energies associated to mutations in real systems. Making use of these effective energies, we study the network of interactions which stabilizes the native conformation of some well-studied proteins, showing that it displays different properties than the associated contact network.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.