Abstract

Increasing evidence indicates that guidance molecules used during development for cellular and axonal navigation also play roles in synapse maturation and homeostasis. In C. elegans the netrin receptor UNC-40/DCC controls the growth of dendritic-like muscle cell extensions towards motoneurons and is required to recruit type A GABA receptors (GABAARs) at inhibitory neuromuscular junctions. Here we show that activation of UNC-40 assembles an intracellular synaptic scaffold by physically interacting with FRM-3, a FERM protein orthologous to FARP1/2. FRM-3 then recruits LIN-2, the ortholog of CASK, that binds the synaptic adhesion molecule NLG-1/Neuroligin and physically connects GABAARs to prepositioned NLG-1 clusters. These processes are orchestrated by the synaptic organizer CePunctin/MADD-4, which controls the localization of GABAARs by positioning NLG-1/neuroligin at synapses and regulates the synaptic content of GABAARs through the UNC-40-dependent intracellular scaffold. Since DCC is detected at GABA synapses in mammals, DCC might also tune inhibitory neurotransmission in the mammalian brain.

Highlights

  • Increasing evidence indicates that guidance molecules used during development for cellular and axonal navigation play roles in synapse maturation and homeostasis

  • We identify here two proteins, FRM-3 and LIN-2, that implement the function of UNC-40 for the recruitment of GABAARs at inhibitory neuromuscular junctions (NMJs)

  • We show that UNC-40 recruits FRM-3, a FERM (p4.1, Ezrin, Radixin, Moesin) protein orthologous to FARP1/2, by a physical interaction between the intracellular P3 domain of UNC-40 and the FERMFA tandem of FRM-3

Read more

Summary

Introduction

Increasing evidence indicates that guidance molecules used during development for cellular and axonal navigation play roles in synapse maturation and homeostasis. FRM-3 recruits LIN-2, the ortholog of CASK, that binds the synaptic adhesion molecule NLG-1/Neuroligin and physically connects GABAARs to prepositioned NLG-1 clusters These processes are orchestrated by the synaptic organizer CePunctin/ MADD-4, which controls the localization of GABAARs by positioning NLG-1/neuroligin at synapses and regulates the synaptic content of GABAARs through the UNC-40-dependent intracellular scaffold. In the presence of UNC5, netrin would trigger the formation of DCC/ UNC5 heterodimers that mediate repulsive behaviors[12] This long-range chemotatic gradient model has recently been revisited after analysis of axonal growth in mice where netrin expression was inactivated in specific subregions of the developing nervous system[13,14,15].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call