Abstract

The general two-dimensional cutting stock problem is concerned with the optimum layout and arrangement of two-dimensional shapes within the spatial constraints imposed by the cutting stock. The main objective is to maximize the utilization of the cutting stock material. This paper presents some of the results obtained from applying a combination of genetic algorithms and heuristic approaches to the nesting of dissimilar shapes. Genetic algorithms are stochastically based optimization approaches which mimic nature's evolutionary process in finding global optimal solutions in a large search space. The paper discusses the method by which the problem is defined and represented for analysis and introduces a number of new problem-specific genetic algorithm operators that aid in the rapid conversion to an optimum solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.