Abstract

Detailed measurements of both the Nernst coefficient, N e, and the current vs. voltage characteristics were carried out in a YBCO film by varying systematically the flux density, B, and the temperature, T. The Nernst coefficient was observed over the temperature region of a fairly wide superconducting vs. normal resistive transition under the applied flux density, B. The transport entropy of a fluxoid, S φ , estimated directly from the present measurements showed a small tail decreasing exponentially with increasing temperature, even above the mean-field critical temperature, T c( B), whereas the existing theory predicted S φ to become zero above T c( B). Then the expression for S φ above T c( B) was derived. The expression for the resistivity around the temperatures of the resistive transition was also derived, including the resistivity due to the flux flow. With the aid of these expressions, the observed Nernst coefficient was explained quantitatively by the present theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.