Abstract

Long planetary and lunar ephemerides like the JPL DE102 and LE51 (Newhall et al., 1983) and the Bureau des Longitudes VSOP (Bretagnon, 1982) and ELP (Chapront-Touze and Chapront, 1983) have enabled more positive ancient eclipse, planetary and cometary identifications, which have in turn refined ephemerides, e.g., the reconstruction of the orbit of comets Halley and Swift-Tuttle (Yeomans and Kiang, 1981; and Yau et al., 1994). The data used to initialize DE102 are pre-1977. Much more observational data have been collected since. The lunar ephemeris has also been improved. The secular lunar acceleration, , from laser ranging, is −25.9±0.5″/cen2 (Williams et al., 1992). We can now uniquely solve for ΔT, the clock error, from ancient eclipse records. The lack of ΔT values before 700 B.C. has left the early timescale of the ephemerides unconstrained (Morrison, 1992). Our solution of this problem is outlined here.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.