Abstract

Cumulative Prospect Theory (CPT) must embrace probability weighting functions with a discontinuity at probability zero to pass the two most prominent litmus tests for descriptive decision theories under risk: the Allais paradox and the St. Petersburg paradox. We prove in a nonparametric framework that, with continuous preference functions, CPT cannot explain both paradoxes simultaneously. Thus, Kahneman and Tversky’s (1979) originally proposed discontinuous probability weighting function has - when applied in a rank-dependent framework, of course - much more predictive power compared to all other popular, but continuous weighting functions, including e.g. Tversky and Kahneman's (1992) proposal. Neo-additive weighting functions constitute another parsimonious, yet promising class of discontinuous weighting functions. In other words, if we rashly restricted CPT to continuous preference functions we might erroneously jump to the conclusion that risk preferences are not stable over similar tasks or even reject CPT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.