Abstract
Robotic spacecrafts have helped expand the reach for many planetary exploration missions. Most ground mobile planetary exploration robots use wheeled or modified wheeled platforms. Although extraordinarily successful at completing intended mission goals, because of the limitations of wheeled locomotion, they have been largely limited to benign, solid terrain and avoided extreme terrain with loose soil/sand and large rocks. Unfortunately, such challenging terrain is often scientifically interesting for planetary geology. Although many animals traverse such terrain at ease, robots have not matched their performance and robustness. This is in major part due to a lack of fundamental understanding of how effective locomotion can be generated from controlled interaction with complex terrain on the same level of flight aerodynamics and underwater vehicle hydrodynamics. Early fundamental understanding of legged and limbless locomotor–ground interaction has already enabled stable and efficient bioinspired robot locomotion on relatively flat ground with small obstacles. Recent progress in the new field of terradynamics of locomotor–terrain interaction begins to reveal the principles of bioinspired locomotion on loose soil/sand and over large obstacles. Multilegged and limbless platforms using terradynamics insights hold the promise for serving as robust alternative platforms for traversing extreme extraterrestrial terrain and expanding the reach in planetary exploration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.