Abstract

Compute and Forward (CF) is a promising relaying scheme which, instead of decoding single messages or forwarding/amplifying information at the relay, decodes linear combinations of the simultaneously transmitted messages. The current literature includes several coding schemes and results on the degrees of freedom in CF, yet for systems with a fixed number of transmitters and receivers. It is unclear, however, how CF behaves at the limit of a large number of transmitters. In this paper, we investigate the performance of CF in that regime. Specifically, we show that as the number of transmitters grows, CF becomes degenerated, in the sense that a relay prefers to decode only one (strongest) user instead of any other linear combination of the transmitted codewords, treating the other users as noise. Moreover, the sum-rate tends to zero as well. This makes scheduling necessary in order to maintain the superior abilities CF provides. Indeed, under scheduling, we show that non-trivial linear combinations are chosen, and the sum-rate does not decay, even without state information at the transmitters and without interference alignment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.