Abstract
Human chromosome 15q11-q13 contains genes that are imprinted and expressed from only one parental allele. Prader-Willi syndrome (PWS) is due to the loss of expression of one or more paternally expressed genes on proximal human chromosome 15q, most often by deletion or maternal uniparental disomy. Several candidate genes and a putative imprinting centre have been identified in the deletion region. We report that the human necdin-encoding gene (NDN) is within the centromeric portion of the PWS deletion region, between the two imprinted genes ZNF127 and SNRPN. Murine necdin is a nuclear protein expressed exclusively in differentiated neurons in the brain. Necdin is postulated to govern the permanent arrest of cell growth of post-mitotic neurons during murine nervous system development. We have localized the mouse locus Ndn encoding necdin to chromosome 7 in a region of conserved synteny with human chromosome 15q11-q13, by genetic mapping in an interspecific backcross panel. Furthermore, we demonstrate that expression of Ndn is limited to the paternal allele in RNA from newborn mouse brain. Expression of NDN is detected in many human tissues, with highest levels of expression in brain and placenta. NDN is expressed exclusively from the paternally inherited allele in human fibroblasts. Loss of necdin gene expression may contribute to the disorder of brain development in individuals with PWS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.