Abstract

The optical and near-infrared late-time spectrum of the under-luminous Type Ia supernova 2003hv is analysed with a code that computes nebular emission from a supernova nebula. Synthetic spectra based on the classical explosion model W7 are unable to reproduce the large \FeIII/\FeII\ ratio and the low infrared flux at $\sim 1$ year after explosion, although the optical spectrum of SN\,2003hv is reproduced reasonably well for a supernova of luminosity intermediate between normal and subluminous (SN\,1991bg-like) ones. A possible solution is that the inner layers of the supernova ejecta ($v \lsim 8000$\,\kms) contain less mass than predicted by classical explosion models like W7. If this inner region contains $\sim 0.5 \Msun$ of material, as opposed to $\sim 0.9 \Msun$ in Chandrasekhar-mass models developed within the Single Degenerate scenario, the low density inhibits recombination, favouring the large \FeIII/\FeII\ ratio observed in the optical, and decreases the flux in the \FeII\ lines which dominate the IR spectrum. The most likely scenario may be an explosion of a sub-Chandrasekhar mass white dwarf. Alternatively, the violent/dynamical merger of two white dwarfs with combined mass exceeding the Chandrasekhar limit also shows a reduced inner density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call