Abstract
We present the first measurement of a bound-state spectrum of the NO-He complex. The recorded spectrum is associated with the first overtone transition of the NO moiety. The IR absorption is detected by exciting the vibrationally excited complex to the Ã-state dissociation continuum. The resulting NO(A) fragment is subsequently ionized in the same laser pulse. We recorded two bands centered around the NO monomer rotational lines, Q11(0.5) and R11(0.5), consistent with an almost free rotation of the NO fragment within the complex. The origin of the spectrum is found at 3724.06 cm-1 blue shifted by 0.21 cm-1 from the corresponding NO monomer origin. The rotational structures of the spectrum are found to be in very good agreement with calculated spectra based on bound states derived from a set of high level ab initio potential energy surfaces [Kłos et al. J. Chem. Phys. 112, 2195 (2000)].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.