Abstract
When a fluid is injected into a porous medium saturated with an ambient fluid of a greater density, the injected fluid forms a plume that rises upwards due to buoyancy. In the near field of the injection point, the plume adjusts its speed to match the buoyancy velocity of the porous medium, either thinning or thickening to conserve mass. These adjustments are the dominant controls on the near-field plume shape, rather than mixing with the ambient fluid, which occurs over larger vertical distances. In this study, we focus on the plume behaviour in the near field, demonstrating that for moderate injection rates, the plume will reach a steady state, whereby it matches the buoyancy velocity over a few plume width scales from the injection point. However, for very small injection rates, an instability occurs in which the steady plume breaks apart due to the insurmountable density contrast with the surrounding fluid. The steady shape of the plume in the near field depends only on a single dimensionless parameter, which is the ratio between the inlet velocity and the buoyancy velocity. A linear stability analysis is performed, indicating that for small velocity ratios, an infinitesimal perturbation can be constructed that becomes unstable, whilst for moderate velocity ratios, the shape is shown to be stable. Finally, we comment on the application of such flows to the context of CO $_2$ sequestration in porous geological reservoirs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.