Abstract

AbstractWe present a new generalization of the bin covering problem that is known to be a strongly NP-hard problem. In our generalization there is a positive constant $$\varDelta $$ Δ , and we are given a set of items each of which has a positive size. We would like to find a partition of the items into bins. We say that a bin is near exact covered if the total size of items packed into the bin is between 1 and $$1+\varDelta $$ 1 + Δ . Our goal is to maximize the number of near exact covered bins. If $$\varDelta =0$$ Δ = 0 or $$\varDelta >0$$ Δ > 0 is given as part of the input, our problem is shown here to have no approximation algorithm with a bounded asymptotic approximation ratio (assuming that $$P\ne NP$$ P ≠ N P ). However, for the case where $$\varDelta >0$$ Δ > 0 is seen as a constant, we present an asymptotic fully polynomial time approximation scheme (AFPTAS) that is our main contribution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.