Abstract

Abstract Argillites that strongly luminesce under UV radiation were detected in the Bazhenov Shale Formation (BSF) of the West Siberian Basin during routine core examination and found to be persistent over a wide lateral area. The mineralogy and fabric of these luminescent layers were characterized by optical and fluorescence microscopy, SEM, TEM, XRD and IR methods. Optical and fluorescence microscopy showed that the luminescent layers were to a large extent derived from volcanic ash falls and could be described as meta-tuffites, although normal detrital sedimentation continued at the same time. The layers have a thickness of several mm to a maximum of 3–4 cm and can be defined as a clay-rich regional horizons extending for over 500 km. XRD showed that two principal clay minerals were predominant, namely a kaolinite group minerals, (kaolinite-rich) and a mixed-layer illite-smectite (I/S) similar to that found in K-bentonite. Total organic matter in the luminescent layers is much lower than that in the enclosing BSF clayey-silty siliceous sediments above and below as shown by pyrolytic analyses. Evidence is presented that the luminescent characteristic of the argillites is related to their clay mineralogy, specifically to their content of kaolin minerals, although a contribution from nitrogenous organic matter cannot be entirely discounted. In some ways the luminescent argillites can be compared with bentonites associated with ash transformations or with tonsteins in coal beds, which are also derived from volcanic ash falls and contain highly crystalline kaolinite. However, tonsteins originate at or near land surface whereas the argillites were apparently formed in the deep ocean. But just as tonsteins can be used for detailed stratigraphic studies and are valuable in the context of coal exploration, so may the luminescent argillites prove to be significant both stratigraphically and in the search for economic hydrocarbon deposits, bearing in mind that their clay mineralogy may be sensitive to temperature and depth of burial and related to their placement in the oil and gas window.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call