Abstract

<p>It is important to understand the variability of plasma processes across many different timescales in order to successfully model plasma in the inner magnetosphere. In this presentation, we focus on the interplay between the variability cold plasmaspheric plasma, whistler-mode wave activity, and the efficacy of wave-particle interactions in the inner magnetosphere. We use in-situ observations to quantify the amount and timescales of variability in pitch-angle diffusion due to plasmaspheric hiss in Earth’s inner magnetosphere, and suggest reasons for the variability. We then use a stochastic parameterization scheme to investigate the consequences of that variability in a numerical diffusion model. The results from the stochastic parameterization are contrasted with the standard approach of constructing averaged diffusion coefficients. We demonstrate that even when the average diffusion rates are the same, different timescales of variability in the wave-particle interactions lead to different end results in numerical diffusion models. We discuss the implications of our results for the modelling of wave-particle interactions in magnetospheres, and suggest quantifications that are vital for accurate modelling.</p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.