Abstract
Proteoglycans extracted with 4M-guanidinium chloride from pig laryngeal cartilage and bovine nasal septum were purified by density-gradient centrifugation in CsCl under 'associative' followed by 'dissociative' conditions [Hascall & Sajdera (1969) J. Biol. Chem. 244, 2384-2396]. Proteoglycans were then digested exhaustively with testicular hyaluronidase, which removed about 80% of the chondroitin sulphate. The hyaluronidase was purified until no proteolytic activity was detectable under the conditions used for digestion. The resulting 'core' proteins of both species were fractionated by a sequence of gel-chromatographic procedures which gave four major fractions of decreasing hydrodynamic size. Those that on electrophoresis penetrated 5.6% (w/v) polyacrylamide gels migrated as discrete bands whose mobility increased with decreasing hydrodynamic size. The unfractionated 'core' proteins had the same N-terminal amino acids as the intact proteoglycan, suggesting that no peptide bonds had been cleaved during hyaluronidase digestion. Alanine predominated as the N-terminal residue in all the fractions of both species. Fractions were analysed for amino acid, amino sugar, uronic acid and neutral sugar compositions. In pig 'core' proteins, the glutamic acid content increased significantly with hydrodynamic size, but in bovine 'core' proteins this trend was less marked. Significant differences in amino acid composition between fractions suggested that in each species there was more than one variety of proteoglycan. The molar proportions of xylose to serine destroyed on alkaline beta-elimination were equivalent in most fractions, indicating that the serine residues destroyed were attached to the terminal xylose of chondroitin sulphate chains. The ratio of serine residues to threonine residues destroyed on beta-elimination, was similar in all fractions of both species. Since the fractions of smallest hydrodynamic size contained less keratan sulphate than those of larger size, it implies that in the former the keratan sulphate chains were shorter than in the latter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.