Abstract

A detailed knowledge of the basic electronic interactions in lead halide perovskites components (PbI2 and methylammonium iodide) can possibly drive enhanced solar cell efficiency. We report an extensive investigation on the electronic structure and nature of the chemical bond in the PbI2 perovskite precursor, both in gas and solid state, together with a comparison with available experimental data, which allows to effectively calibrate the computational framework, along with gaining basic understanding on the nature of the PbI chemical bond. Inclusion of spin orbit coupling and calibrated HF exchange contribution to the DFT hybrid functional are proved essential for an accurate description of the electronic structure of both molecular and solid state PbI2. Such computational framework, calibrated on the model PbI2 system, can be directly translated to the accurate description of the electronic band structure of the prototypical methylammonium lead-iodide perovskite, setting the basis for the trustful modelling of different lead-halide perovskites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.