Abstract

The long ${\it Swift}$ gamma-ray burst GRB 120326A at redshift $z=1.798$ exhibited a multi-band light curve with a striking feature: a late-time, long-lasting achromatic rebrightening, rarely seen in such events. Peaking in optical and X-ray bands $\sim 35$ ks ($\sim 12.5$ ks in the GRB rest frame) after the 70-s GRB prompt burst, the feature brightens nearly two orders of magnitude above the underlying optical power-law decay. Modelling the multiwavelength light curves, we investigate possible causes of the rebrightening in the context of the standard fireball model. We exclude a range of scenarios for the origin of this feature: reverse-shock flash, late-time forward shock peak due to the passage of the maximal synchrotron frequency through the optical band, late central engine optical/X-ray flares, interaction between the expanding blast wave and a density enhancement in the circumburst medium and gravitational microlensing. Instead we conclude that the achromatic rebrightening may be caused by a refreshed forward shock or a geometrical effect. In addition, we identify an additional component after the end of the prompt emission, that shapes the observed X-ray and optical light curves differently, ruling out a single overall emission component to explain the observed early time emission.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.