Abstract

AbstractThe nature of the chemical bond in UO2 was analyzed taking into account the X‐ray photoelectron spectroscopy (XPS) structure parameters of the valence and core electrons, as well as the relativistic discrete variation electronic structure calculation results for this oxide. The ionic/covalent nature of the chemical bond was determined for the UO8 (D4h) cluster, reflecting uranium's close environment in UO2, and the U13O56 and U63O216 clusters, reflecting the bulk of solid uranium dioxide. The bar graph of the theoretical valence band (from 0 to ~35 eV) of XPS spectrum was built such that it was in satisfactory agreement with the experimental spectrum of a UO2 single crystalline thin film. It was shown that unlike the crystal field theory results, the covalence effects in UO2 are significant due to the strong overlap of the U 6p and U 5f atomic orbitals with the ligand orbitals, in addition to the U 6d atomic orbital (AO). A quantitative molecular orbital (MO) scheme for UO2 was built. The contribution of the MO electrons to the chemical bond covalence component was evaluated on the basis of the bond population values. It was found that the electrons of inner valence molecular orbitals (IVMO) weaken the chemical bond formed by the electrons of outer valence molecular orbitals (OVMO) by 32% in UO8 and by 25% in U63O216.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call