Abstract

The problem of the beginning of iron production in the Late Bronze Age of the Ural-Kazakhstan region is dis-cussed. For this, 13 iron-bearing artefacts from nine settlements that functioned in the 2nd mil. BC were studied using the SEM-EDS and LA-ICP-MS methods: metal objects, metallurgical slags, and a bimetallic droplet. Most of the studied artefacts are not related to the iron metallurgy. High ferric impurities in copper metal products of the Late Bronze Age on the territory of the Southern Trans-Urals are caused by the use of iron-rich ore concentrates. The raw materials for these products were represented by mixed oxidized-sulphide ores from the cementation subzone of the volcanogenic massive sulphide and skarn copper deposits. Iron droplets, frequently found in the Late Bronze Age copper slag in the Ural-Kazakhstan region, are not directly related to iron metallurgy. They are by-products of the copper metallurgy formed in the process of copper extraction from the iron-rich components of the furnace charge or fluxes (brown iron ore, iron sulphides). The only artefacts that indicate direct smelting of metal from iron ore are the slag fragments from the Kent settlement. Presumably, oxidized martitized ore of the Kentobe skarn deposit or its nearby analogues was used to extract iron at the Kent settlement. Rare finds of iron slags from the Late Bronze Age, known only in the territory of Central Kazakhstan, confirm an extremely small scale of iron production. Iron ore had been already deliberately used for these experiments. However, iron metal-lurgy in the Ural-Kazakhstan region developed into a mature industry much later. The discovery of iron metallurgy based on the smelting of copper-sulphide ores in the Ural-Kazakhstan steppes is doubtful. The use of sulphide ores here is known from the 20th c. BC, and it was widespread. In the meantime, the first iron slags and products appear much later, and their finds are sporadic. The development of iron metallurgy on the basis of experiments with iron ores seems more likely.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call