Abstract

The cell wall organization, the cell wall texture, and the degree of lignification of tension wood fibres have been investigated in a wide variety of temperate and tropical species. Following earlier work describing the cell wall structure of tension wood fibres, two additional types of cell wall organization have been observed. In one of these, the inner thick "gelatinous" layer which is typical of tension wood fibres exists in addition to the normal three-layered structure of the secondary wall; in the other only the outer layer of the secondary wall and the thick gelatinous layer are present. In all the tension wood examined the micellar orientation in the inner gelatinous layer has been shown to be nearly axial and the cellulose of this layer found to be in a highly crystalline state. A general argument is presented as to the meaning of differences in the degree, of crystallinity of cellulose. The high degree of crystallinity of cellulose in tension wood as compared with normal wood is attributed to a greater degree of lateral order in the crystalline regions of tension wood, whereas the paracrystalline phase is similar in both cases. The degree of lignification in tension wood fibres has been shown to be extremely variable. However, where the degree of tension wood development is marked as revealed by the thickness of the gelatinous layer the lack of lignification is also most marked. Severity of tension wood formation and lack of lignification have also been correlated with the incidence of irreversible collapse in tension wood. Such collapse can occur even when no whole fibres are present, e.g. in thin cross sections. Microscopic examination of collapsed samples of tension wood has led to the conclusion that the appearance of collapse in specimens containing tendon wood can often be attributed in part to excessive shrinkage associated with the development of fissures between cells, although true collapse does also occur. Possible explanations of the irreversible shrinkage and collapse of tension wood fibres are advanced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.