Abstract

We present high resolution echelle spectra of 7 proximate damped Lyman alpha (PDLA) systems whose relative velocity separation from the background quasar is Delta V < 3000 km/s. Combining our sample with a further 9 PDLAs from the literature we compare the chemical properties of the proximate systems with a control sample of intervening DLAs. Taken at face value, the sample of 16 PDLAs exhibits a wide range of metallicities, ranging from Z ~ 1/3 Z_sun down to Z ~ 1/1000 Z_sun, including the DLA with the lowest N(SiII)/N(HI) yet reported in the literature. We find several pieces of evidence that indicate enhanced ionization and the presence of a hard ionizing spectrum in PDLAs which lead to properties that contrast with the intervening DLAs, particularly when the N(HI) is low. The abundances of Zn, Si and S in PDLAs with log N(HI) > 21, where ionization corrections are minimized, are systematically higher than the intervening population by a factor of around 3. We also find possible evidence for a higher fraction of NV absorbers amongst the PDLAs, although the statistics are still modest. 6/7 of our echelle sample show high ionization species (SiIV, CIV, OVI or NV) offset by >100 km/s from the main low ion absorption. We analyse fine-structure transitions of CII* and SiII* to constrain the PDLA distance from the QSO. Lower limits range from tens of kpc up to >160 kpc for the most stringent limit. We conclude that (at least some) PDLAs do exhibit different characteristics relative to the intervening population out to 3000 km/s (and possibly beyond). Nonetheless, the PDLAs appear distinct from lower column density associated systems and the inferred QSO-absorber separations mean they are unlikely to be associated with the QSO host. We speculate that the PDLAs preferentially sample more massive galaxies in more highly clustered regions of the high redshift universe.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.